Theoretical study of the interaction of carbon monoxide with 3d metal dimers

Ling Jiang, and Qiang Xu

Citation: The Journal of Chemical Physics **128**, 124317 (2008); doi: 10.1063/1.2842066 View online: https://doi.org/10.1063/1.2842066 View Table of Contents: http://aip.scitation.org/toc/jcp/128/12 Published by the American Institute of Physics

Articles you may be interested in

Sequential bonding of CO molecules to a titanium dimer: A photoelectron velocity-map imaging spectroscopic and theoretical study of $Ti_2(CO)_n$ (n = 1-9) The Journal of Chemical Physics **145**, 184302 (2016); 10.1063/1.4966261

Reactions of molybdenum and tungsten atoms with nitrous oxide in excess argon: A combined matrix infrared spectroscopic and theoretical study The Journal of Chemical Physics **132**, 164305 (2010); 10.1063/1.3395338

Observation of the lead carbonyls, $Pb_{n}CO(n=1-4)$: Reactions of lead atoms and small clusters with carbon monoxide in solid argon The Journal of Chemical Physics **122**, 034505 (2005); 10.1063/1.1834915

Density-functional thermochemistry. III. The role of exact exchange The Journal of Chemical Physics **98**, 5648 (1993); 10.1063/1.464913

Photoelectron velocity-map imaging and theoretical studies of heteronuclear metal carbonyls $MNi(CO)_3$ (M = Mg, Ca, Al) The Journal of Chemical Physics **144**, 124303 (2016); 10.1063/1.4944529

Reactions of ruthenium and rhodium atoms with carbon monoxide and dinitrogen mixtures: A combined experimental and theoretical study The Journal of Chemical Physics **132**, 054504 (2010); 10.1063/1.3299715

Theoretical study of the interaction of carbon monoxide with 3*d* metal dimers

Ling Jiang and Qiang Xu^{a)}

National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan

(Received 10 December 2007; accepted 17 January 2008; published online 31 March 2008)

The interaction of carbon monoxide with 3d metal dimers (scandium through zinc) has been examined using six different exchange-correlation density functionals. Results are compared to the relevant experimental values and to other theoretical investigations when available, and the overall agreement has been obtained. The BP86 functional gives calculated C-O stretching vibrational frequencies much closer to the experimental values than the B3P86, B3LYP, mPW1PW91, and PBE1PBE functionals, and furthermore, replacing the correlation part by the Lee-Yang-Parr correlation functional yields essentially the same results. It is generally found that on going from left to right across the 3d metal series, the preference for geometrical configuration is from side-on-bonded mode to bridging, and then to terminal, whereas Ni₂CO adopts bridging mode. Particularly, the present computation reveals a significant tendency toward four-electron donor carbonyl groups with metal-oxygen bonds with the early transition metals scandium and titanium. The C–O stretching vibrational frequencies in the ground states of M_2 CO (M=Sc to Zn) increase generally from the left to the right side of the Periodic Table. The binding energies exhibit an overall decrease trend. These general trends in the interaction of carbon monoxide with 3d metal dimers mirror the main features of CO adsorption on transition metal surfaces. © 2008 American Institute of Physics. [DOI: 10.1063/1.2842066]

I. INTRODUCTION

The study of the interaction of carbon monoxide with transition metals is a topic of considerable interest from an academic or an industrial viewpoint.¹ Many industrial processes such as hydroformylation, Fischer–Tropsch synthesis, and acetic acid synthesis employ carbon monoxide as the reagent and transition metal compounds as heterogeneous or homogeneous catalysts and involve transition metal carbonyl intermediates.² Generally, the CO adsorption on the 3*d* metal surfaces of Sc to Fe indicate a tendency toward CO dissociation, whereas for Co to Cu, it tends to remain adsorbed on the surfaces.^{1–8} In particular, unusually low C–O stretching frequencies around 1100–1400 cm⁻¹ were observed on the Cr(110) and Fe(100) surfaces.⁴ Weak adsorption of CO was observed on the Ni(111), Cu(111), Cu(110), and Cu(100) surfaces.^{5–8}

Interest of the interaction of carbon monoxide with metal dimers remains high because it serves as the simplest model systems for fundamental understanding of the multifaceted mechanisms of carbon monoxide activation by metal clusters and surfaces. Recently, the reactions of CO with group 3 metal and early lanthanide dimers generated a new series of the $M_2[\eta^2(\mu_2$ -C,O)] (M=Sc,Y,La,Ce,Gd) molecules with asymmetrically bridging and side-on-bonded CO ligands, which are drastically activated with remarkably low C–O stretching frequencies.^{9–12} Matrix investigations of the reaction of some 3*d* metal dimers with CO molecules character-

ized a series of dinuclear carbonyls, Ti₂CO,¹³ Mn₂CO,^{14,15} Fe₂CO,^{16–18} Co₂CO,¹⁹ and Cu₂CO.²⁰ Theoretical investigations have been carried out for Fe₂CO,²¹ Ni₂CO,²² and Cu₂CO.^{23–25} To explore the trends in the interaction of carbon monoxide with 3*d* metal dimers, systematical computations were carried out for the equilibrium geometries and harmonic vibrational frequencies of the possible structures and electronic states of M_2 CO (M=Sc to Zn) with six popular density functionals in this study. Comparison with the relevant experimental values and with other theoretical investigations when available is also presented.

II. THEORETICAL METHODS

The GAUSSIAN 03 program was used for all calculations.²⁶ The 6-311+G(d) basis set was used for C and O atoms,²⁷ and the Wachters-Hay all-electron basis set was used for 3d metal atoms.^{28,29} The functionals used in the present study have been denoted BP86, B3P86, BLYP, B3LYP, mPW1PW91, and PBE1PBE. The first four are constructed using either the pure density functional theory (DFT) exchange functional of 1988 (B) (Ref. 30) or the three-parameter Hartree-Fock/DFT hybrid exchange functional (B3) (Ref. 31) combined with the correlation functional of Perdew 86 (P86) (Refs. 32 and 33) or Lee-Yang-Parr (LYP).³⁴ The mPW1PW91 functional comprises modified Perdew-Wang exchange (mPW) and Perdew-Wang 1991 correlation (PW91).³⁵ The PBE1PBE functional consists of 25% exchange and 75% correlation weighting of 1997 hybrid functional of Perdew-Burke-Ernzerhof (PBE).³⁶ Considering that the BP86 and BPW91 (Refs. 30

^{a)}Author to whom correspondence should be addressed. Electronic mail: q.xu@aist.go.jp.

TABLE I. Comparison of experimental and theoretical C-O stretching vibrational frequencies (cm^{-1}) for the ground state M_2 CO (M=Sc to Zn) species. Parenthetical values are the deviations from the experimental values.

Species	State	BP86	B3P86	BLYP	B3LYP	mPW1PW91	PBE1PBE	Expt.
Sc ₂ CO	$^{1}A'$	1237.6	1291.2	1215.2	1271.9	1297.3	1300.5	1193.4 ^a
		(44.2)	(97.8)	(21.8)	(78.5)	(103.9)	(107.1)	
Ti ₂ CO	${}^{3}A''$	1330.9	1362.3	1313.9	1345.0	1364.3	1366.2	1297.8 ^b
		(33.1)	(64.5)	(16.1)	(47.2)	(66.5)	(68.4)	
V ₂ CO	$^{3}A'$	1825.4	1932.6	1835.0	1936.0	2025.8	1826.2	1801.6 ^c
		(23.8)	(131.0)	(33.4)	(134.4)	(224.2)	(24.6)	
Cr ₂ CO	$^{1}A'$	1947.3	2048.3	1944.0	2043.6	2057.3	2055.8	1879.1 ^c
		(68.2)	(169.2)	(64.9)	(165.4)	(178.2)	(176.7)	
Mn ₂ CO	${}^{9}A''$	1763.5	1822.8	1754.2	1809.0	1815.0	1814.4	
		(75.3)	(134.6)	(66.0)	(120.8)	(126.8)	(126.2)	1688.2 ^d
		(76.0)	(135.3)	(66.7)	(121.5)	(127.5)	(126.9)	1687.5 ^e
Fe ₂ CO	$^{7}A'$	1927.3	2051.2	1920.5	2038.0	2072.6	2070.6	1898.0 ^f
		(29.3)	(153.2)	(22.5)	(140.0)	(174.6)	(172.6)	
Co ₂ CO	${}^{5}A''$	1958.3	2109.5	1944.9	2098.5	2140.1	2100.1	1953.3 ^g
		(5.0)	(156.2)	(-8.4)	(145.2)	(186.8)	(146.8)	
Ni ₂ CO	${}^{1}A_{1}$	1793.0	1895.3	1773.6	1874.2	1909.1	1910.0	1769.1 ^c
		(23.9)	(126.2)	(4.5)	(105.1)	(140.0)	(140.9)	
Cu ₂ CO	${}^{1}\Sigma^{+}$	2071.1	2201.0	2055.1	2186.3	2223.7	2222.1	
		(-46.2)	(83.7)	(-62.2)	(69.0)	(106.4)	(104.8)	2117.3 ^c
		(-44.9)	(85.0)	(-60.9)	(70.3)	(107.7)	(106.1)	2116 ^h
Zn ₂ CO	$^{1}A'$	2120.8	2225.3	2112.2	2211.9	2242.3	2240.7	

^aReference 9.

^bReference 13.

^cUnpublished results of this laboratory. ^dReference 14. ^eReference 15.

^fReference 18.

^gReference 19.

^hReference 20.

and 37) functionals usually yield essentially the same results as were found in many cases such as metal carbonyls,^{38,39} BPW91 was not used here. The equilibrium geometries and harmonic vibrational frequencies of the possible structures and electronic states of M_2 CO (M=Sc to Zn) were calculated using the above-mentioned six density functionals. Molecular orbitals were generated with GAUSSVIEW.

III. RESULTS AND DISCUSSION

Table I reports the comparison of experimental and theoretical C-O stretching vibrational frequencies for the ground state M_2 CO (M=Sc to Zn) species. It can be found from Table I that the BP86 and BLYP functionals give calculated C-O stretching vibrational frequencies much closer to the experimental values than the B3P86, B3LYP, mPW1PW91, and PBE1PBE functionals, and furthermore, the BP86 functional performs slightly better than the BLYP functional. Hereafter, mainly BP86 results are presented for discussion. Ground electronic states, point groups, vibrational frequencies, and intensities of the ground state M_2 CO (M = Sc to Zn) species are listed in Table II. Calculated and experimental adiabatic ionization energies of the naked 3dmetal dimers are given in Table III. Mulliken atomic charges of the ground state M_2 CO (M=Sc to Zn) species are presented in Table IV. Figures 1-7 show representatively lowlying structures and their relative energies of M_2 CO. Molecular orbital depictions of the highest occupied molecular orbitals (HOMOs) and HOMO-1s of the ground state M_2 CO (M = Sc to Zn) species are illustrated in Fig. 8. All the configurations are found to be planar. The geometry optimization procedures starting with nonplanar trial structures without imposing any symmetry constraint all resulted in the planar configurations. Results of the present computations together with relevant experimental and previous theoretical work are presented below for each individual species, moving from left to right across the series.

A. Sc₂CO

The ground state of Sc₂CO is predicted to be ¹A' (Fig. 1), which has an asymmetrically bridging and side-onbonded CO ligand. The ³A' and ⁵A' states of Sc₂CO lie 12.9 and 26.3 kcal/mol higher in energy than its ground state, respectively, and also present side-on-bonded configurations. The low-lying ³B₂ and ⁵B₂ states of Sc₂CO are above its ground state by 28.3 and 33.6 kcal/mol, respectively, corresponding to the structures with the CO molecules in the bridging position between the two scandium atoms. The lowest energy state with linear arrangement of atoms, ¹Σ⁺, lies 45.5 kcal/mol in energy higher than the ¹A' one. It is noted that the spin multiplicity of Sc₂ (the ground state is ⁵Σ_u⁻) changes upon attachment of CO.

The C–O stretching vibrational frequency of the ground state of Sc_2CO is calculated to be 1237.6 cm⁻¹, which is consistent with the experimental value (1193.4 cm⁻¹) (Table I) and previous calculations.⁹ The C–O bond length (1.321 Å) is much longer than the value of the free CO molecule (1.140 Å) calculated at the same level of theory, implying that the C–O bond is highly activated in this side-onbonded Sc_2CO species. The Sc–Sc bond length in Sc_2CO is elongated by 0.111 Å relative to the naked Sc_2 . The Sc–C

TABLE II. Ground electronic states, point groups, vibrational frequencies (cm⁻¹), and intensities (km/mol) of the ground state M_2 CO (M=Sc to Zn) species calculated at the BP86/6-311+G(d) level of theory.

Species	Ground electronic state	Point group	Frequencies (intensity, mode)
Sc ₂ CO	$^{1}A'$	C_s	1237.6 (290, <i>A</i> '), 663.3 (1, <i>A</i> '), 546.7 (15, <i>A</i> '), 429.0 (19, <i>A</i> '), 338.4 (9, <i>A</i> "), 219.5 (3, <i>A</i> ')
Ti ₂ CO	³ <i>A</i> ″	C_s	1330.9 (303, <i>A</i> '), 719.1 (3, <i>A</i> '), 544.8 (2, <i>A</i> '), 367.1 (2, <i>A</i> "), 360.5 (6, <i>A</i> "), 256.7 (5, <i>A</i> ")
V ₂ CO	$^{3}A'$	C_s	1825.4 (888, <i>A</i> '), 672.5 (20, <i>A</i> '), 454.0 (0.2, <i>A</i> '), 421.0 (35, <i>A</i> '), 331.3 (2, <i>A</i> "), 84.4 (0.3, <i>A</i> ')
Cr ₂ CO	$^{1}A'$	C_s	1947.3 (884, <i>A</i> '), 710.6 (35, <i>A</i> '), 399.1 (0.1, <i>A</i> '), 328.0 (21, <i>A</i> '), 288.8 (1, <i>A</i> "), 102.6 (5, <i>A</i> ')
Mn ₂ CO	⁹ A″	C_s	1763.5 (612, <i>A</i> '), 507.4 (5, <i>A</i> '), 354.7 (3, <i>A</i> "), 321.5 (4, <i>A</i> '), 230.2 (1, <i>A</i> '), 107.2 (1, <i>A</i> ')
Fe ₂ CO	$^{7}A'$	C_s	1927.3 (1213, <i>A'</i>), 462.2 (27, <i>A'</i>), 334.5 (4, <i>A'</i>), 301.5 (0.1, <i>A''</i>), 259.1 (23, <i>A'</i>), 51.3 (1, <i>A'</i>)
Co ₂ CO	⁵ <i>A</i> "	C_s	1958.3 (1012, <i>A'</i>), 500.8 (20, <i>A'</i>), 364.8 (2, <i>A''</i>), 348.7 (5, <i>A'</i>), 292.1 (2, <i>A'</i>), 69.5 (1, <i>A'</i>)
Ni ₂ CO	${}^{1}A_{1}$	C_{2v}	1793.0 (498, A_1), 595.4 (0.1, B_2), 533.8 (0.01, A_1), 393.6 (5, B_1), 266.4 (0.4, A_1), 234.3 (1, B_2)
Cu ₂ CO	$^{1}\Sigma^{+}$	$C_{\infty v}$	2071.1 (668, σ), 425.8 (0.01, σ), 285.6 (6×2, π), 236.4 (4, σ), 33.1 (0.4×2, π)
Zn ₂ CO	$^{1}A'$	C_s	2120.8 (80, A'), 52.7 (0, A'), 15.4 (0.1, A'), 9.3 (0.1, A''), 8.6 (0.0001, A'), 2.5 (0.0001, A')

and Sc–O stretching frequencies are predicted to be 663.3, 546.7, and 429.0 cm⁻¹ (Table II), respectively, while their intensities (1, 15, and 19 km/mol) are too small to be detected. The Sc–Sc stretching is predicted to be 219.5 cm⁻¹ with small intensity (3 km/mol), which is beyond our spectral range of $5000-400 \text{ cm}^{-1.9}$

B. Ti₂CO

The ground state of Ti₂CO is predicted to be ${}^{3}A''$ and the geometrical configuration is similar to that of the ground state of Sc₂CO, where CO is also side-on bonded to the two titanium atoms (Fig. 2). Energetically next two higher structures of Ti₂CO with side-on-bonded configurations are calculated to be ${}^{1}A'$ and ${}^{5}A''$, respectively, which lie 8.5 and 13.5 kcal/mol higher in energy than its ground state. Two low-lying bridging configurations correspond to the ${}^{5}A_{2}$ and ${}^{3}A_{2}$ states, respectively, which are above its ground state by 16.1 and 21.4 kcal/mol. The lowest energy terminal configuration with an ${}^{3}A''$ state lies 29.6 kcal/mol higher in energy than its ground state. The present computations indicate that the spin multiplicity of Ti₂ (the ground state is ${}^{3}\Delta_{g}$) remains unchanged upon attachment of CO, different from the case for Sc₂.

For the ground state of Ti_2CO , the Ti-Ti bond length is elongated by 0.386 Å relative to the naked Ti_2 . The C–O bond length in Ti_2CO is slightly shorter by 0.032 Å than that in Sc₂CO (Figs. 1 and 2). The C–O stretching vibrational frequency in Ti_2CO is calculated to be 1330.9 cm⁻¹, which is in accord with the experimental value of 1297.8 cm⁻¹ (Table I) and previous computations.¹³ The Ti–C and Ti–O stretching frequencies are predicted to be 719.1, 544.8, and 367.1 cm⁻¹ with small intensities of 3, 2, and 2 km/mol (Table II), respectively. The Ti–Ti stretching is predicted to be 256.7 cm⁻¹.

C. V₂CO

The ground state of V₂CO is predicted to be ${}^{3}A'$ with a semibridging CO (Fig. 3). Energetically next higher structure with semibridging configuration is calculated to be ${}^{1}A'$, which lies 0.8 kcal/mol higher in energy than its ground state. Two low-lying structures with side-on-bonded configurations correspond to the ${}^{3}A''$ and ${}^{5}A'$ states, respectively, which are above its ground state by 20.0 and 20.5 kcal/mol. The lowest energy terminal configuration is calculated to be an ${}^{5}A'$ state with the V–V–C angle of 109.8°, which lies 21.3 kcal/mol higher in energy than its ground state. It is noted that the spin multiplicity of V₂ (the ground state is ${}^{3}\Sigma_{g}^{-}$) remains unchanged upon attachment of CO, similar to the case for Ti₂ but different from the case for Sc₂.

The V–V bond length in the ground state of V₂CO is slightly shorter by 0.034 Å than that in the naked V₂. The C–O bond length in V₂CO is calculated to 1.184 Å, which is visibly shorter by 0.137 and 0.105 Å than those in Sc₂CO and Ti₂CO (Figs. 1–3), respectively. The C–O stretching vibrational frequency is calculated to be 1825.4 cm⁻¹, which agrees well with the experimental value (1801.6 cm⁻¹) (Table I). The V–V stretching is predicted to be 672.5 cm⁻¹, while its intensity (20 km/mol) is too small to be detected. The V–C stretching frequencies are predicted to be 454.0 and 421.0 cm⁻¹ with small intensities of 0.2 and 35 km/mol (Table II), respectively.

FIG. 1. Representative low-lying structures and their relative energies of Sc_2CO calculated at the BP86/6-311+G(*d*) level of theory (bond length in angstrom, bond angle in degree, and relative energy in kcal/mol).

FIG. 2. Representative low-lying structures and their relative energies of Ti_2CO calculated at the BP86/6-311+G(*d*) level of theory (bond length in angstrom, bond angle in degree, and relative energy in kcal/mol).

D. Cr₂CO

The ground state of Cr₂CO is predicted to be ¹A' and its geometrical configuration is similar to that of the ground state of V₂CO, where CO is also in the semibridging position (Fig. 4). The lowest ³A" state is separated from the ground state by 1.4 kcal/mol. The lowest energy terminal configuration is calculated to be ${}^{1}\Sigma_{g}^{+}$, which lies 14.3 kcal/mol higher in energy than the ground state. Other two low-lying bridging and semibridging configurations correspond to the ${}^{3}B_{1}$ and ${}^{5}A''$ states, respectively, which are above the ground state by 20.9 and 23.7 kcal/mol. The spin multiplicity of Cr₂ (the ground state is ${}^{1}\Sigma_{g}^{+}$) remains unchanged upon attachment of CO, similar to the cases for Ti₂ and V₂ but different from the case for Sc₂.

The Cr–Cr bond length in the ground state of Cr₂CO is slightly elongated by 0.047 Å relative to the naked Cr₂. The C–O bond length in Cr₂CO is calculated to 1.162 Å, which is similar to that in V₂CO (1.184 Å) but visibly shorter than those in Sc₂CO (1.321 Å) and Ti₂CO (1.289 Å) (Figs. 1–4). The C–O stretching vibrational frequency is calculated to be 1947.3 cm⁻¹, which should be scaled down by 0.965 to fit the experimental value of 1879.1 cm⁻¹ (Table I). The Cr–Cr stretching is predicted to be 710.6 cm⁻¹ with small intensity (35 km/mol) (Table II). The Cr–C stretching frequencies are predicted to be 399.1 and 328.0 cm⁻¹ with the intensities of 0.1 and 21 km/mol (Table II), respectively.

E. Mn₂CO

The lowest energy geometrical configuration is predicted be a ${}^{9}\Sigma^{+}$ state (Fig. 5). Energetically next higher structure with terminal configuration is calculated to be ${}^{3}A''$, which lies 3.1 kcal/mol higher in energy than the ${}^{9}\Sigma^{+}$ state. Two low-lying semibridging and bridging configurations correspond to the ${}^{9}A''$ and ${}^{7}B_{1}$ states, respectively, which are above the ${}^{9}\Sigma^{+}$ state by 3.2 and 11.3 kcal/mol. This indicates that the first three low-lying states (${}^{9}\Sigma^{+}$, ${}^{3}A''$, and ${}^{9}A''$) are very close in energy. The calculated C–O stretching vibrational frequency in the ${}^{9}A''$ state (1763.5 cm⁻¹) is closer to the experimental values [1688.2 and 1687.5 cm⁻¹ (Refs. 14 and 15)] than those in the ${}^{9}\Sigma^{+}$ (1902.9 cm⁻¹) and ${}^{3}A''$

FIG. 3. Representative low-lying structures and their relative energies of V₂CO calculated at the BP86/6-311+G(d) level of theory (bond length in angstrom, bond angle in degree, and relative energy in kcal/mol).

(1862.1 cm⁻¹) states. For these reasons, the ⁹A" state is assumed to be the ground state of Mn₂CO. The ground state of naked manganese dimer has been a matter of considerable debate. According to the present computations, the ground state of Mn₂ is ¹¹\Pi_u, which is consistent with the previous DFT calculations.⁴⁰ Some recent investigations claimed that Mn₂ had a ¹ Σ_g^+ ground state.^{41,42} Anyway, the spin multiplicity of Mn₂ (the ground state is ¹ $\Sigma_g^+/$ ¹¹ Π_u) changes upon attachment of CO, similar to the case for Sc₂ but different from the cases for Ti₂, V₂, and Cr₂.

The Mn–Mn bond length in the ground state of Mn₂CO is elongated by 0.821 Å relative to the ${}^{1}\Sigma_{g}^{+}$ state of Mn₂ or is shorter by 0.136 Å relative to the ${}^{11}\Pi_{u}$ state of Mn₂. The C–O bond length in Mn₂CO is calculated to 1.199 Å, which is similar to those in V₂CO (1.184 Å) and Cr₂CO (1.162 Å) but visibly shorter than those in Sc₂CO (1.321 Å) and Ti₂CO (1.289 Å) (Figs. 1–5). The Mn–C stretching frequencies are predicted to be 507.4 and 321.5 cm⁻¹ with small intensities of 5 and 4 km/mol (Table II), respectively. The Mn–Mn stretching frequency is predicted to be 230.2 cm⁻¹ with the intensity of 1 km/mol.

FIG. 4. Representative low-lying structures and their relative energies of Cr_2CO calculated at the BP86/6-311+G(*d*) level of theory (bond length in angstrom, bond angle in degree, and relative energy in kcal/mol).

F. Fe₂CO and Co₂CO

Detailed discussions about the Fe2CO and Co2CO species have been reported previously^{18,19} and only the ground state structures and energetically next higher structures of Fe₂CO and Co₂CO are given in Fig. 6. In short, the ground states of Fe₂CO and Co₂CO are predicted to be $^{7}A'$ and $^{5}A''$, respectively, where the CO ligands are in the terminal position and the M-M-C angles (M=Fe,Co) are 119.8° and 117.0° (Fig. 6). Energetically next higher structures for Fe₂CO and Co₂CO are calculated to be ${}^{5}A'$ and ${}^{3}A''$, respectively, where the CO ligands are in the semibridging position between the two metal atoms. The C-O stretching vibrational frequencies in the ground states of Fe₂CO and Co₂CO are calculated to be 1927.3 and 1958.3 cm⁻¹, respectively, which agree well with the experimental values (1898.0 and 1953.3 cm⁻¹) (Table I). Our computations are consistent with the previous reports.^{16–19,21}

G. Ni₂CO

The ground state of Ni₂CO is predicted to be ${}^{1}A_{1}$, where CO is in the bridging position between the two nickel atoms (Fig. 7). Energetically next higher structure corresponds to

$$Mn - \frac{2.455}{Mn} Mn \frac{1.842}{C} C \frac{1.173}{O} \qquad 9\Sigma^+, 0.0$$

FIG. 5. Representative low-lying structures and their relative energies of Mn_2CO calculated at the BP86/6-311+G(*d*) level of theory (bond length in angstrom, bond angle in degree, and relative energy in kcal/mol).

an ${}^{3}A''$ state, which is above its ground state by 10.8 kcal/mol. The ${}^{3}A''$ state of Ni₂CO carries a terminal CO with the Ni–Ni–C angle of 144.6°. The structure with the linear configuration lies 11.1 kcal/mol higher in energy than the ground state and has one imaginary frequency (the structure is not shown here), which is consistent with the previous computation.²² The ground state of naked nickel dimer is still the subject of discussions. The present computations predict the ground state of Ni₂ to be ${}^{3}\Sigma_{g}^{-}$, which is in accord with

FIG. 6. Ground state structures and energetically next higher isomers for Fe_2CO and Co_2CO calculated at the BP86/6-311+G(*d*) level of theory (bond length in angstrom, bond angle in degree, and relative energy in kcal/mol).

the previous DFT computations.⁴⁰ The spin multiplicity of Ni₂ (the ground state is ${}^{3}\Sigma_{g}^{-}$) changes upon attachment of CO, similar to the cases for Sc₂ and Mn₂ but different from the cases for Ti₂, V₂, Cr₂, Fe₂, and Co₂.

The Ni–Ni bond length in the ground state of Ni₂CO is slightly elongated by 0.151 Å relative to the naked Ni₂. The C–O bond length in Ni₂CO is calculated to 1.196 Å, which is similar to those in M_2 CO (M=V, Cr, Mn, Fe, Co) (1.162–1.184 Å) but visibly shorter than those in M_2 CO (M=Sc,Ti) (1.289–1.321 Å) (Figs. 1–7). The C–O stretching vibrational frequency in Ni₂CO is calculated to be 1793.0 cm⁻¹, which agrees well with the experimental value (1769.1 cm⁻¹) (Table I). The Ni–Ni stretching is predicted to be 266.4 cm⁻¹ with very weak intensity (0.4 km/mol) (Table II).

H. Cu₂CO

Cu₂CO has a ${}^{1}\Sigma^{+}$ ground state with a terminal CO (Fig. 7), which is in agreement with the previous computations.^{24,25(a)} The lowest energy bridging configuration corresponds to an ${}^{1}A_{1}$ state, which is above its ground state by 26.7 kcal/mol. Recent DFT calculations using the effective core potential plus double zeta basis set for copper atom showed that the ground state of Cu₂CO has a bent and terminal CO.^{25(b)} Using the Wachters–Hay all-electron basis set for copper atoms, however, optimizations performed beginning with bent trial geometries all have arrived at linear configuration, suggesting a basis set effect on the geometrical configuration of the ground state of Cu₂CO. Such effect of basis set has not been found for other 3*d* metals. It is noted that the spin multiplicity of Cu₂ (the ground state is ${}^{1}\Sigma_{g}^{+}$) remains unchanged upon attachment of CO, similar to the cases for Ti₂, V₂, Cr₂, Fe₂, and Co₂ but different from the cases for Sc₂, Mn₂, and Ni₂.

The Cu–Cu bond length in the ground state of Cu₂CO is slightly elongated by 0.008 Å relative to the naked Cu₂. The C–O bond length in Cu₂CO is calculated to 1.148 Å, which is similar to those in M_2 CO (M=V to Ni) (1.162–1.184 Å) but visibly shorter than those in M_2 CO (M=Sc,Ti) (1.289–1.321 Å) (Figs. 1–7). The C–O stretching vibrational frequency is calculated to be 2071.1 cm⁻¹, which is consistent with the experimental observations (Table I). The Cu–C stretching is predicted to be 425.8 cm⁻¹ with very weak intensity of 0.01 km/mol (Table II).

I. Zn₂CO

Zn₂CO has an ¹A' ground state with a semibridging CO (Fig. 7). The lowest energy terminal configuration corresponds to an ³A" state, which is above its ground state by 35.5 kcal/mol. The spin multiplicity of Zn₂ (the ground state is ${}^{1}\Sigma_{g}^{+}$) remains unchanged upon attachment of CO, similar to the cases for Ti₂, V₂, Cr₂, Fe₂, Co₂, and Cu₂ but different from the cases for Sc₂, Mn₂, and Ni₂. The Zn–Zn bond length in the ground state of Zn₂CO is slightly shorter by 0.003 Å relative to the naked Zn₂. The Zn–C bond length is ~7.8 Å and the C–O bond length of 1.140 Å is the same as the value of the free CO molecule calculated at the same

FIG. 7. Ground state structures and energetically next higher isomers Ni₂CO, Cu₂CO, and Zn₂CO calculated at the BP86/6-311+G(d) level of theory (bond length in angstrom, bond angle in degree, and relative energy in kcal/mol).

level of theory. This suggests that CO is unbound with the zinc dimer, which is consistent with the absence of Zn_2CO from experiments.

IV. TREND ANALYSIS

The low-lying structures and their relative energies together with vibrational frequencies of M_2 CO (M=Sc to Zn) have been discussed in the above sections. We turn now to general trends in the interaction of carbon monoxide with 3dmetal dimers. It is generally found that on going from left to right across the 3d series, the preference for geometrical configuration is from side-on-bonded mode to bridging, and then to terminal, whereas Ni₂CO adopts bridging mode. The C-O stretching vibrational frequencies in the ground states of M_2 CO increase generally from the left to the right side of 3dmetals. The binding energies are predicted to be 68.6 (Sc), 49.5 (Ti), 29.1 (V), 14.3 (Cr), (Mn), 32.2 (Fe), 38.9 (Co), 49.1 (Ni), 27.7 (Cu), and 0.01 kcal/mol (Zn), respectively, showing an overall decreasing trend. As illustrated in Fig. 8, the HOMOs of M_2 CO (M=Sc,Ti) are π -type bond, which comprise the metal \rightarrow CO 2π backbonding, leading to the weakening of the C–O bond. The HOMOs of M_2 CO (M =V to Cu) are nonbonding and the HOMO-1s for V, Cr, and Co comprise the metal \rightarrow CO 2π backbonding. There is no obvious interaction of CO with Zn_2 , as shown in Fig. 8.

These general trends can be understood by considering the metal-CO bonding mechanism. This is the familiar synergistic combination of CO 5σ electron donation into the metal valence bands with a compensating backdonation into the CO $2\pi^*$ antibonding molecular orbital. The 3*d* orbital of the metal atoms decreases in size as one goes from left to right in the Periodic Table, which leads to a decrease of $d\pi$ backdonation. This corresponds to a stronger C–O bond and therefore to a higher C–O stretching vibrational frequency. Perusal of the data of adiabatic ionization energies in Table III reveals that on going from left to right in the Periodic Table, the possibility of losing an electron from the metal dimer grows down, implying that CO will gain more electrons from Sc₂ and Ti₂ than the others. The values of Mulliken atomic charges for M_2 CO support this conclusion (Table IV).

The above trends in the interaction of carbon monoxide with 3d metal dimers mirror the main features of the adsorption of carbon monoxide on transition metal surfaces. In general, dissociation adsorption of CO is suppressed on going from left to right in the Periodic Table of 3d metal elements.^{1–8} Chemisorption and dissociation of CO occur on early transition metal surfaces and side-on-bonded CO is more stable than the terminally bonded CO as were found in some surfaces.⁴ CO adsorbs in a terminal orientation with the carbon end toward the surfaces to the right side of 3d series, such as Co, Ni, and Cu.⁵⁻⁸ It should be noted that surface defects such as steps and kinks can also facilitate CO dissociation on some transition metals including those to the right side of the transition series.³ Thus, our present computations together with the recent reports⁹⁻²⁵ model the adsorption and dissociation of CO on transition metal surfaces, especially offering the geometrical configurations for the unusually low

TABLE III. Calculated (BP86) and experimental adiabatic ionization energies (kcal/mol) of the naked 3d metal dimers.

Species	Sc ₂	Ti ₂	V_2	Cr ₂	Mn ₂	Fe ₂	Co ₂	Ni ₂	Cu ₂	Zn_2
Calc. Expt.	121.8	140.5	148.3 146.6 ^a	191.5 161.4 ^b	147.1 ≤149.2 ^c	159.8 145.3 ^d	169.2 ≤148.1 ^e	181.8 171.3 ^f	190.7 182.2 ^g	180.2 207.5 ^h

^aReference 43.

^bReference 44.

^cReference 45.

^dReference 46.

^eReference 47. ^fReference 48. ^gReference 49. ^hReference 50.

Species	Sc ₂ CO	Ti ₂ CO	V ₂ CO	Cr ₂ CO	Mn ₂ CO	Fe ₂ CO	Co ₂ CO	Ni ₂ CO	Cu ₂ CO	Zn ₂ CO
<i>M</i> ₂	0.624	0.493	0.290	0.061	0.085	0.048	0.066	0.112	-0.457	0.000
С	-0.305	-0.322	-0.088	0.057	0.180	0.097	0.038	0.030	0.393	-0.041
0	-0.229	-0.171	-0.202	-0.118	-0.265	-0.145	-0.104	-0.142	0.064	0.041

TABLE IV. Mulliken atomic charges of the ground state M_2 CO (M=Sc to Zn) species calculated at the BP86/6-311+G(d) level of theory.

observed C–O stretching frequencies $(1100-1400 \text{ cm}^{-1})$ of the chemisorbed CO molecules on transition metal surfaces and metal catalysts.^{1–8}

V. CONCLUSIONS

The equilibrium geometries and harmonic vibrational frequencies of the possible structures and electronic states of M_2 CO (M=Sc to Zn) were determined using six different exchange-correlation density functionals. All the configura-

FIG. 8. (Color online) Molecular orbital depictions of the HOMOs and HOMO-1s of the ground state of M_2 CO (M=Sc to Zn) species.

tions are found to be planar. The geometry optimization procedures starting with nonplanar trial structures without imposing any symmetry constraint all resulted in the planar configurations. The computed results agree with the available experimental observations and previous theoretical studies. The BP86 functional gives calculated C–O stretching vibrational frequencies much closer to the experimental values than the B3P86, B3LYP, mPW1PW91, and PBE1PBE functionals. It is noted that replacing the correlation part by the LYP correlation functional yields essentially the same results.

It is generally found that on going from left to right across the 3d series, the preference for bonding mode of CO to the metal dimer is from side-on bonded to bridging, and then to terminal, whereas Ni₂CO prefers bridging configuration. The C-O stretching vibrational frequencies in the ground states of M_2 CO increase generally from the left to the right side of 3d metals. The binding energies exhibit an overall decreasing trend. These general trends in the interaction of carbon monoxide with 3d metal dimers mirror the main features of the adsorption of carbon monoxide on transition metal surfaces. Most importantly, we hope our work would stimulate systematically theoretical studies on the interaction of small molecules (i.e., CO₂, H₂, H₂O, CH₄, C₂H₄, etc.) with a series of metal clusters at consistent levels of theory with the goal to understand the multifaceted mechanisms of the adsorption of such molecules on metal surfaces and catalysts.

ACKNOWLEDGMENTS

This work was supported by AIST and a Grant-in-Aid for Scientific Research (B) (Grant No. 17350012) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. L.J. is grateful to JSPS for a postdoctoral fellowship.

⁴N. D. Shinn and T. E. Madey, Phys. Rev. Lett. **53**, 2481 (1984); N. D. Shinn and T. E. Madey, J. Chem. Phys. **83**, 5928 (1985); D. W. Moon, S. L. Bernasek, D. J. Dwyer, and J. L. Gland, J. Am. Chem. Soc. **107**, 4363

¹ The Nature of the Surface Chemical Bond, edited by T. N. Rhodin and G. Ertl (North-Holland, Amsterdam, 1979); The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, edited by D. A. King and D. P. Woodruff (Elsevier, Amsterdam, 1991); Advanced Inorganic Chemistry, 6th ed., edited by F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bochmann (Wiley, New York, 1999).

²M. A. Vannice, Catal. Today **12**, 255 (1992); E. I. Solomon, P. M. Jones, and J. A. May, Chem. Rev. (Washington, D.C.) **93**, 2623 (1993); A. Sen, Acc. Chem. Res. **26**, 303 (1993).

³ See, for example, *Introduction to Surface Chemistry and Catalysis*, edited by G. A. Somorjai (Wiley, New York, 1994); A. C. Pavão, T. C. Guima-rães, S. K. Lie, C. A. Taft, and W. A. Lester, Jr., J. Mol. Struct.: THEOCHEM **458**, 99 (1999) and references therein; Z. P. Liu and P. Hu, J. Am. Chem. Soc. **125**, 1985 (2003); P. Crawford and P. Hu, J. Chem. Phys. **126**, 194706 (2007).

(1985).

- ⁵S. L. Tang, J. D. Beckerle, M. B. Lee, and S. T. Ceyer, J. Chem. Phys. 84. 6488 (1986).
- ⁶H. P. Steinruch, A. Winkler, and K. D. Rendulic, Surf. Sci. 152, 323 (1985).
- M. A. Hines and R. N. Zare, J. Chem. Phys. 98, 9134 (1993).
- ⁸D. Heskett, E. W. Plummer, and R. P. Messmer, Surf. Sci. 139, 558 (1984)
- ⁹L. Jiang and Q. Xu, J. Am. Chem. Soc. 127, 42 (2005); J. Phys. Chem. A 110, 5636 (2006).
- ¹⁰Q. Xu, L. Jiang, and R. Q. Zou, Chem.-Eur. J. 12, 3226 (2006).
- ¹¹M. F. Zhou, X. Jin, and J. Li, J. Phys. Chem. A **110**, 10206 (2006).
- ¹²X. Jin, L. Jiang, Q. Xu, and M. F. Zhou, J. Phys. Chem. A 110, 12585 (2006).
- ¹³Q. Xu, L. Jiang, and N. Tsumori, Angew. Chem., Int. Ed. 44, 4338 (2005).
- ¹⁴H. Huber, E. P. Kundig, G. A. Ozin, and A. J. Poe, J. Am. Chem. Soc. 97, 308 (1975).
- ¹⁵L. Andrews, M. F. Zhou, X. F. Wang, and C. W. Bauschlicher, Jr., J. Phys. Chem. A 104, 8887 (2000).
- ¹⁶ M. F. Zhou, G. V. Chertihin, and L. Andrews, J. Chem. Phys. 109, 10893 (1998).
- ¹⁷ M. F. Zhou and L. Andrews, J. Chem. Phys. **110**, 10370 (1999).
- ¹⁸B. Tremblay, G. Gutsev, L. Manceron, and L. Andrews, J. Phys. Chem. A 106, 10525 (2002).
- ¹⁹B. Tremblay, L. Manceron, G. Gutsev, L. Andrews, and H. Partridge III, J. Chem. Phys. 117, 8479 (2002).
- ²⁰ M. Moskovits and J. E. Hulse, J. Phys. Chem. **81**, 2004 (1977).
- ²¹G. L. Gutsev, C. W. Bauschlicher, Jr., and L. Andrews, J. Chem. Phys. 119, 3681 (2003).
- ²²I. S. Ignatyev, H. F. Schaefer III, R. B. King, and S. T. Brown, J. Am. Chem. Soc. 122, 1989 (2000).
- ²³D. Post and E. J. Baerends, J. Chem. Phys. 78, 5663 (1983).
- ²⁴ P. Fournier, J. Chem. Phys. **102**, 5396 (1995).
- ²⁵(a) Q. S. Li, Y. D. Liu, Y. M. Xie, R. B. King, and H. F. Schaefer III, Inorg. Chem. 40, 5842 (2001); (b) Z. X. Cao, Y. J. Wang, J. Zhu, W. Wu, and Q. E. Zhang, J. Phys. Chem. B 106, 9649 (2002).
- ²⁶ M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN03, Revision B.04, Gaussian Inc., Pittsburgh, PA, 2003.
- ²⁷ A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980); R.

- Krishnan, J. S. Binkley, R. Seeger, and J. A. Pople, *ibid.* 72, 650 (1980).
- ²⁸A. J. H. Wachter, J. Chem. Phys. **52**, 1033 (1970).
- ²⁹ P. J. Hay, J. Chem. Phys. 66, 4377 (1977).
- ³⁰A. D. Becke, Phys. Rev. A **38**, 3098 (1988). ³¹A. D. Becke, J. Chem. Phys. **98**, 5648 (1993).
- ³²J. P. Perdew, Phys. Rev. B **33**, 8822 (1986).
- ³³J. P. Perdew, Phys. Rev. B **34**, 7046 (1986).
- ³⁴C. Lee, E. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988). ³⁵C. Adamo and V. Barone, J. Chem. Phys. 108, 664 (1998).
- ³⁶J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 78, 1396 (1997).
- ³⁷ J. P. Perdew and Y. Wang, Phys. Rev. B **45**, 13244 (1992).
- ³⁸M. F. Zhou, L. Andrews, and C. W. Bauschlicher, Jr., Chem. Rev. (Washington, D.C.) 101, 1931 (2001) and references therein.
- ³⁹H. J. Himmel, A. J. Downs, and T. M. Greene, Chem. Rev. (Washington, D.C.) 102, 4191 (2002) and references therein.
- ⁴⁰G. L. Gutsev and C. W. Bauschlicher, Jr., J. Phys. Chem. A 107, 4755 (2003).
- ⁴¹S. Yanagisawa, T. Tsuneda, and K. Hirao, J. Chem. Phys. 112, 545 (2000); C. J. Barden, J. C. Rienstra-Kiracofe, and H. F. Schaefer III, ibid. 113, 690 (2000).
- ⁴²J. R. Lombardi and B. Davis, Chem. Rev. (Washington, D.C.) 102, 2431 (2002) and references therein.
- ⁴³ A. M. James, P. Kowalczyk, E. Langlois, M. D. Campbell, A. Ogawa, and B. Simard, J. Chem. Phys. 101, 4485 (1994).
- ⁴⁴B. Simard, M. A. Lebeault-Dorget, A. Marijnissen, and J. J. ter Meulen, J. Chem. Phys. 108, 9668 (1998).
- ⁴⁵ M. F. Jarrold, A. J. Illies, and M. T. Bowers, J. Am. Chem. Soc. 107, 7339 (1985).
- ⁴⁶E. A. Rohlfing, D. M. Cox, A. Kaldor, and K. H. Johnson, J. Chem. Phys. 81, 3846 (1984).
- ⁴⁷D. A. Hales, C. X. Su, L. Lian, and P. B. Armentrout, J. Chem. Phys. 100, 1049 (1994).
- ⁴⁸ J. C. Pinegar, J. D. Langenberg, C. A. Arrington, E. M. Spain, and M. D. Morse, J. Chem. Phys. 102, 666 (1995).
- ⁴⁹A. S. Sappey, J. E. Harrington, and J. C. Weisshaar, J. Chem. Phys. 91, 3854 (1989).
- ⁵⁰S. W. Buckner, J. R. Gord, and B. S. Freiser, J. Chem. Phys. 88, 3678 (1988).