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The structures, energetics, and infrared (IR) spectra of the cationic monomethylamine-water
clusters, [(CH3NH2)(H2O)n]

+ (n=1−5), have been studied using quantum chemical calcu-
lations at the MP2/6-311+G(2d,p) level. The results reveal that the formation of proton-
transferred CH2NH3

+ ion core structure is preferred via the intramolecular proton transfer
from the methyl group to the nitrogen atom and the water molecules act as the acceptor for
the O· · ·HN hydrogen bonds with the positively charged NH3

+ moiety of CH2NH3
+, whose

motif is retained in the larger clusters. The CH3NH2
+ ion core structure is predicted to be

less energetically favorable. Vibrational frequencies of CH stretches, hydrogen-bonded and
free NH stretches, and hydrogen-bonded OH stretches in the calculated IR spectra of the
CH2NH3

+ and CH3NH2
+ type structures are different from each other, which would afford

the sensitive probes for fundamental understanding of hydrogen bonding networks generated
from the radiation-induced chemical processes in the [(CH3NH2)(H2O)n]

+ complexes.
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I. INTRODUCTION

The strong hydrogen bonding networks in the water-
containing complexes play important roles in the nu-
cleation and growth of atmospheric nanoparticles [1].
The ubiquitous presence of methylamines (monomethy-
lamine (MMA), dimethylamine (DMA), and trimethy-
lamine (TMA)) has been found in the atmosphere [2].
Because of the substitution by one or more organic func-
tional groups, methylamines have stronger basicity than
ammonia and often participate in the formation and
transformation of atmospheric aerosols [2–4]. For in-
stance, the MMA has been found to be about 25−100
times more effective in enhancing sulfuric acid-water
nucleation than ammonia [5]. Microwave spectroscopy
of the TMA-water complex revealed the formation of
a strong HOH−N(CH3)3 hydrogen bond, in which the
water molecule internally rotates around the symmetry
axis of TMA [6]. Theoretical studies of the interaction
between the methylamine molecules and one or two wa-
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ter molecules indicated that the water molecules act as
the donor for the formation of the OH· · ·N hydrogen
bonds [7]. A closed ring with four hydrogen-bonded
H2O molecules was observed in the (TMA)2(H2O)4
clusters [8].

The study on the hydrogen bonding networks in
the cationic complexes generated from the radiation-
induced chemical processes is of fundamental impor-
tance in many fields, such as interstellar and atmo-
spheric chemistry, and nuclear reactors [9]. Gas-phase
cluster studies provide detailed structural, energetic,
and spectroscopic information that is difficult to extract
from the condense-phase measurement [10–14]. For
example, the infrared photodissociation (IRPD) spec-
troscopy of the (H2O)n

+ clusters has demonstrated that
the formation of H3O

+ ion core is preferred with wa-
ter and the OH radical is separated from H3O

+ by
at least one water molecule in the n≥5 clusters [15–
18]. IRPD spectroscopic and theoretical studies of
the cationic (DMA)n

+ clusters have revealed that the
proton-transferred (CH3)2NH2

+ ion core is formed via
the intermolecular proton transfer from the NH group
to the nitrogen atom and the [(CH3)2N] radical is sep-
arated from the (CH3)2NH2

+ ion core by one DMA
molecule at n=4−6 and by two or more DMA molecules
in the larger clusters [19]. For the cationic (TMA)n

+

clusters, the formation of the charge-shared (hemibon-
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ded) N· · ·N type (TMA)2
+ ion core was identified [20].

The MMA molecule has one polar NH2 group and
one nonpolar CH3 group, which affords a model sys-
tem for studying the hydrogen bonding networks in the
radiation-induced chemical processes and the mecha-
nism of proton transfer. So far, much less efforts have
been made for the study of the monomethylamine-water
complexes, [(CH3NH2)(H2O)n]

+. Herein, we report
a theoretical study of the structures, energetics, and
infrared spectra of [(CH3NH2)(H2O)n]

+ via a cluster
model. It has been found that the formation of proton-
transferred CH2NH3

+ ion core structure is preferred
via the intramolecular proton transfer from the methyl
group to the nitrogen atom and the water molecules act
as the acceptor for the O· · ·HN hydrogen bonds with
the positively charged NH3

+ moiety of the CH2NH3
+

ion core. This feature is different from the neutral
CH3NH2-H2O clusters [6–8]. The present findings sug-
gest the general trends in the motif of hydrogen bonding
networks of the monomethylamine-water complexes.

II. THEORETICAL METHODS

All calculations were carried out using the MP2
method with a basis set of 6-311+G(2d,p) implemented
in the Gaussian 09 package [21]. Tight convergence of
the optimization and the self-consistent field procedures
was imposed, and an ultrafine grid was used. Relative
energies, dissociation energies, and energy barriers in-
cluded the zero-point vibrational energies. Harmonic
vibrational frequencies were calculated with analytical
second derivatives of energy. A scaled factor of 0.9566
was used for harmonic vibrational frequencies [22]. The
resulting stick spectra were convoluted by a Gaussian
line shape function with a full width at half-maximum
line width of 6 cm−1.

III. RESULTS AND DISCUSSION

A. Optimized structures

The optimized structures of the [(CH3NH2)(H2O)n]
+

(n=1−5) clusters are shown in FIG. 1. In the lowest-
energy isomer of the n=1 cluster (labeled 1-I), the water
molecule acts as an acceptor to form an O· · ·HN hydro-
gen bond with the NH3 moiety of CH2NH3

+, in which
the CH2NH3

+ ion core is formed via the intramolecular
proton transfer from the methyl group to the nitrogen
atom. In the 1-I isomer, the Mulliken charge on the C
atom, H2O, CH2, and NH3 moiety are −0.12, 0.01, 0.25,
and 0.74, respectively, indicating that the NH3 moiety is
the most positively charged. The bond distance of C−N
and O· · ·HN hydrogen bonds are 1.46 and 1.66 Å, re-
spectively. Isomer 1-II consists of a CH3NH2

+ ion core,
in which the CH3NH2 and water molecules are held to-
gether by an O· · ·HN hydrogen bond. Isomer 1-II lies

FIG. 1 Optimized structures of [(CH3NH2)(H2O)n]
+

(n=1−5) (C, gray; H, light gray; N, blue; O, red). Rela-
tive energies are given in kJ/mol.

13.1 kJ/mol higher in energy than isomer 1-I. In the
1-II isomer, the Mulliken charge on the C atom, H2O,
CH3, and NH2 moiety is −0.26, 0.01, 0.32, and 0.67,
respectively. The bond distance of C−N and O· · ·HN
hydrogen bonds in isomer 1-II is 1.43 and 1.62 Å, re-
spectively.

In the lowest-energy isomer for [(CH3NH2)(H2O)2]
+,

labeled 2-I in FIG. 1, each water molecule forms an
O· · ·HN hydrogen bond with the proton-transferred
CH2NH3

+ ion core. In the isomer 2-II (+12.2 kJ/mol),
the two water molecules fill the NH2

+ moiety of the
CH3NH2

+ ion core. In the lowest-energy structure for
[(CH3NH2)(H2O)3]

+ (3-I), the three water molecules fill
the NH3

+ moiety of the CH2NH3
+ ion core. In the iso-

mer 3-II (+22.1 kJ/mol), the third water molecule does
not directly bond to the CH3NH2

+ ion core but rather
to one other water molecule, thus forming a water-water
hydrogen bond.

In the lowest-energy structure for [(CH3NH2)
(H2O)4]

+ (4-I), the fourth water molecule bonds to the
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FIG. 2 Simulated IR spectra of the two lowest-lying isomers of [(CH3NH2)(H2O)n]
+ (n=1−5). The assignment is: A,

H-bonded NH stretch (red); B, CH stretch (black); C, free NH stretch (magenta); D, H-bonded OH stretch (green); E, free
OH stretch (blue).

two other water molecules, forming a four-membered
hydrogen bonding network with the CH2NH3

+ ion core.
In the isomer 4-II (+25.5 kJ/mol), the position of the
fourth water molecule is symmetry-equivalent to that
of the third water molecule. In the 5-I structure for
[(CH3NH2)(H2O)5]

+, the fifth water molecule extends
the water-water hydrogen bonding network with the
four-membered ring and forms a second solvation layer.
The isomer 5-II (+31.7 kJ/mol) consists of a four-
membered hydrogen bonding network, in which the oxy-
gen atoms of the two water molecules act as the hydro-
gen bond donors to the hydrogen atoms of the NH2 and
CH3 groups of the CH3NH2

+ ion core.

B. IR spectra

FIG. 2 shows the calculated IR spectra of the
[(CH3NH2)(H2O)n]

+ (n=1−5) clusters in the spectra
range of 2400−3900 cm−1. Vibrational frequencies of
isomers n-I and n-II and band assignments are listed in
Table I.

The calculated IR spectrum of isomer 1-I shows four
main absorption features labeled A, B, C, and E in
FIG. 2. The peak at 2824 cm−1 (labeled A, highlighted
in red in FIG. 2) is due to the hydrogen-bonded NH
stretch of the CH2NH3

+ ion core (Table I). The peaks
at 3086 and 3240 cm−1 (labeled B, shown in black in
FIG. 2) are attributed to the CH symmetric and anti-
symmetric stretches of the CH2 group of the CH2NH3

+

ion core. The peaks at 3262 and 3346 cm−1 (labeled
C, highlighted in magenta in FIG. 2) are attributed to
the free NH symmetric and antisymmetric stretches of

the NH3 group in the CH2NH3
+ ion core. The peaks

at 3632 and 3733 cm−1 (labeled E, highlighted in blue
in FIG. 2) are attributed to the free OH symmetric and
antisymmetric stretches of the water molecule. In the
calculated IR spectrum of isomer 1-II, band A is pre-
dicted at 2802 cm−1, showing a redshift of 22 cm−1 as
compared to isomer 1-I; band B shows a triplet splitting
at 2892, 2974, and 3087 cm−1 for the CH symmetric
and antisymmetric stretches of the CH3 group in the
CH3NH2

+ ion core; band C appears as a single peak at
3405 cm−1 for the free NH stretch of the CH3NH2

+ ion
core; band E is calculated at 3633 and 3735 cm−1.

In the calculated IR spectrum of isomer 2-I, band
A shows a doublet splitting at 2971 and 2996 cm−1 for
the hydrogen-bonded NH stretches of the CH2NH3

+ ion
core; the CH symmetric and antisymmetric stretches of
the CH2 group are calculated at 3088 and 3239 cm−1,
respectively, which are very similar to the positions in
isomer 1-I (3086 and 3240 cm−1); one free NH stretch
appears at 3290 cm−1; the two free OH symmetric and
antisymmetric stretches of the water molecules are pre-
dicted at 3638 and 3742 cm−1, respectively. In the
calculated IR spectrum of isomer 2-II, the positions of
bands A and E are similar to those of isomer 2-I; the
free NH stretch disappears because of the full solvation
of the NH2

+ moiety by the water molecules, showing
obvious difference from the calculated IR spectrum of
isomer 2-I.

In the calculated IR spectrum of isomer 3-I, band
A shows a triplet splitting at 3010, 3074, and
3102 cm−1 for the hydrogen-bonded NH stretches of
the CH2NH3

+ ion core; the CH symmetric and anti-
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TABLE I Calculated scaled harmonic frequencies (in cm−1) at MP2/6-311+G(2d,p) level and band assignments for
[(CH3NH2)(H2O)n]

+ (n=1−5) clusters.

Isomer Band A Band B Band C Band D Band E

1-I 2824 3086, 3240 3262, 3346 3632, 3733

1-II 2802 2892, 2974, 3087 3405 3633, 3735

2-I 2971, 2996 3088, 3239 3290 3638, 3742

2-II 2974, 3043 2877, 3009, 3077 3639, 3742

3-I 3010, 3074, 3102 3092, 3237 3643, 3748

3-II 2760, 3081 2883, 3008, 3072 3342 3642, 3648, 3719, 3746, 3756

4-I 2980, 3060, 3130 3090, 3235 3528, 3546 3622, 3644, 3723, 3727, 3730, 3751

4-II 2841, 2887 3009, 3073 3370 3649, 3723, 3758

5-I 2942, 3029, 3146 3089, 3234 3345, 3433, 3478 3645, 3653, 3695, 3729, 3731, 3752, 3762

5-II 2867, 2916 2884, 2999, 3068 3323, 3381, 3425 3650, 3652, 3713, 3724, 3737, 3760, 3762

Assign. Hydrogen-bonded CH stretch Free NH Hydrogen-bonded Free OH stretch

NH stretch stretch OH stretch

symmetric stretches of the CH2 group are calculated at
3092 and 3237 cm−1, respectively; the free NH stretch
disappears due to the full solvation of the NH3

+ moi-
ety by the water molecules; the two free OH symmetric
and antisymmetric stretches of the water molecules are
predicted at 3643 and 3748 cm−1, respectively. In the
calculated IR spectrum of isomer 3-II, band A appears
at 2760 and 3081 cm−1; the positions of bands B and
E are similar to those of isomer 2-II; a new feature is
observed at 3342 cm−1 (labeled D, highlighted in green
in FIG. 2), which is attributed to the hydrogen-bonded
OH stretch of the water molecule.

As compared to the calculated IR spectrum of iso-
mer 3-I, the hydrogen-bonded OH stretching vibraitonal
mode starts to appear in isomer 4-I (band D, 3528 and
3546 cm−1) because of the formation of water-water
hydrogen bond. The calculated IR spectrum of isomer
4-II is very similar to that of isomer 3-II, except that
the separation of the two peaks of band A (46 cm−1) is
much smaller than that in isomer 3-II (321 cm−1). As
shown in FIG. 1, the number of the hydrogen-bonded
O−H bonds in 5-I and 5-II is three, resulting in three
vibrational peaks for band D (FIG. 2).

C. General trend

Two types of structure are obtained for each cationic
monomethylamine-water cluster (FIG. 1). The first
type is the proton-transferred CH2NH3

+ ion core type
structure (labeled n-I), which is the most stable mo-
tif in the [(CH3NH2)(H2O)n]

+ clusters studied here.
The next energetically higher motif consists of the
CH3NH2

+ ion core type structure (labeled n-II). The
isomerization barrier from 1-II to 1-I and from 2-II to
2-I is calculated to be 154.1 and 155.8 kJ/mol at the
MP2/6-311+G(2d,p) level, respectively. These results
suggest the formation of proton-transferred CH2NH3

+

ion core structure is preferred via the intramolecular
proton transfer from the methyl group to the nitro-
gen atom and the water molecules act as the accep-
tor to form the O· · ·HN hydrogen bonds with the pos-
itively charged NH3

+ moiety of CH2NH3
+. Note that

the barrier for the isomerization from the CH3NH2
+

type structure to the CH2NH3
+ type one is not low, the

CH3NH2
+ type structure could be kinetically trapped

prior to its rearrangement to the lower energy species.
High energy isomers have been observed experimentally
in several cluster systems [23, 24]. In contrast, the water
molecules act as the donor for the formation of OH· · ·N
hydrogen bonds with the NH2 group of CH3NH2 in
the neutral CH3NH2-H2O clusters [7], which is differ-
ent from the hydrogen bonding network in the cationic
CH3NH2-H2O clusters.

The lowest dissociation energy for the loss of one
water molecule for isomer n-I of [(CH3NH2)(H2O)n]

+

(n=1−5) is calculated to be 94.2, 66.5, 58.0, 48.5,
and 44.6 kJ/mol at the MP2/6-311+G(d,p) level
(Table II), respectively. While the internally cold
[(CH3NH2)(H2O)n]

+ species is formed, the absorption
of at least 3, 2, 2, 2, and 2 photons at 3000 cm−1 is re-
quired to overcome the dissociation limit for n=1−5
(Table II), respectively. Considering that the CH
stretch, the free/hydrogen-bonded NH stretch, and
the free/hydrogen-bonded OH stretch have been mea-
sured in the IRPD spectra of methylamine, ammo-
nia, water, and protonated trimethylamine-water clus-
ters [19, 20, 25–27], the predicted IR spectra for the
[(CH3NH2)(H2O)n]

+ (n=1−5) clusters could be mea-
sured by the IRPD technique using optical paramet-
ric oscillator/optical parametric amplifier (OPO/OPA)
table-top laser system or infrared free electron laser (IR-
FEL) source.

For band A, the number of the hydrogen-bonded NH
stretching vibrational peaks is three in the n-I isomers
(n=3−5), whereas it is two in the n-II isomers (n=3−5)
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TABLE II The lowest dissociation energies (Ediss) for
the loss of one water molecule for isomer n-I of
[(CH3NH2)(H2O)n]

+ (n=1−5) and the number of IR photon
N required to overcome the dissociation limit at 3000 cm−1.

isomer Ediss/(kJ/mol (cm−1)) N

1-I 94.2 (7877) 3

2-I 66.5 (5557) 2

3-I 58.0 (4844) 2

4-I 48.5 (4054) 2

5-I 44.6 (3732) 2

(FIG. 2 and Table I). For band B, two peaks of the CH
stretches are observed in the n-I structures (CH2NH3

+

ion core type), whereas three peaks are obtained in the
n-II structures (CH3NH2

+ ion core type). The number
of the free NH stretching vibrational peaks (band C) is
two and one for the 1-I and 1-II isomers, respectively;
the 2-I isomer yields one peak for band C, whereas the
2-II isomer and the larger clusters do not show the fea-
ture of the free NH stretch. Band D firstly appears
in the 3-II isomer. Band E is similar in the n-I and
n-II isomers. Thus, the features of band A−D in the
calculated IR spectra of the CH2NH3

+ and CH3NH2
+

type structures for [(CH3NH2)(H2O)n]
+ are different

from each other, which would afford the sensitive probes
for the structural identification by comparing the calcu-
lated IR spectra with the experimental IRPD spectra.
These findings would have important implications for
molecular-level understanding of the hydrogen bonding
networks in the [(CH3NH2)(H2O)n]

+ complexes.

IV. CONCLUSION

The trends in the stepsize formation of hydrogen
bonding networks in the cationic monomethylamine-
water clusters, [(CH3NH2)(H2O)n]

+, were studied us-
ing quantum chemical calculations. The results in-
dicate that the most stable structures of the nomi-
nal [(CH3NH2)(H2O)n]

+ clusters could be regarded as
the proton-transferred CH2NH3

+-(H2O)n motifs, which
involve the intramolecular proton transfer from the
methyl group to the nitrogen atom. The CH3NH2

+

ion core structures are predicted to be less energet-
ically favorable. Calculated infrared spectra suggest
that the CH stretching, hydrogen-bonded and free
NH stretching, and hydrogen-bonded OH stretching
vibrational modes would afford the sensitive probes
for the structural identification. IR spectra for the
[(CH3NH2)(H2O)n]

+ clusters could be measured by
the infrared photodissociation spectroscopic technique
and thus provide a fundamental understanding of
the early stage of hydrogen bonding networks in the
[(CH3NH2)(H2O)n]

+ clusters.
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