Observation of unsaturated platinum carbenes $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ clusters: A photoelectron imaging spectroscopic and theoretical study

Cite as: J. Chem. Phys. 156, 164302 (2022); https://doi.org/10.1063/5.0079854
Submitted: 25 November 2021 • Accepted: 05 April 2022 • Accepted Manuscript Online: 06 April 2022

- Published Online: 25 April 2022

Xuegang Liu, Gang Li, Zhiling Liu, et al.

View Online
Export Citation
CrossMark

ARTICLES YOU MAY BE INTERESTED IN

A deep potential model with long-range electrostatic interactions
The Journal of Chemical Physics 156, 124107 (2022); https://doi.org/10.1063/5.0083669

Photoelectron imaging of $\mathrm{Ptl}_{2}{ }^{-}$and its Ptl^{-}photodissociation product
The Journal of Chemical Physics 156, 134303 (2022); https://doi.org/10.1063/5.0085610
An ion mobility mass spectrometer coupled with a cryogenic ion trap for recording electronic spectra of charged, isomer-selected clusters
Review of Scientific Instruments 93, 043201 (2022); https://doi.org/10.1063/5.0085680

Publishing

Observation of unsaturated platinum carbenes $\mathrm{Pt}_{2} \mathrm{C}_{2 n^{-}}(\mathrm{n}=1-3)$ clusters: A photoelectron imaging spectroscopic and theoretical study

Cite as: J. Chem. Phys. 156, 164302 (2022); doi: 10.1063/5.0079854
Submitted: 25 November 2021 • Accepted: 5 April 2022 •

Export Citation

Xuegang Liu, ${ }^{1,2}$ Gang Li, ${ }^{2}$ (Dhiling Liu, ${ }^{3}$ (D) Jinghan Zou, ${ }^{\text {(D D D }}$ Dong Yang, ${ }^{2}$ Shihu Du, ${ }^{2}$ Wenshao Yang, ${ }^{1, a)}$ Ling Jiang, ${ }^{2, a)}$ (D) and Hua Xie ${ }^{2, a)}$ (D)

AFFILIATIONS
${ }^{1}$ Hangzhou Institute of Advanced Studies, Zhejiang Normal University, 1108 Gengwen Road, Hangzhou 311231, Zhejiang, China
${ }^{2}$ State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, Liaoning, China
${ }^{3}$ School of Chemical and Material Science, Key Laboratory of Magnetic Molecules and Magnetic Information Materials, Ministry of Education, Shanxi Normal University, 339 Taiyu Road, Taiyuan, Shanxi 030000, China

${ }^{\text {a) }}$ Authors to whom correspondence should be addressed: wenshaoyang@zjnu.cn; Ijiang@dicp.ac.cn; xiehua@dicp.ac.cn

Abstract

The structural and bonding properties of the $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ complexes have been investigated by mass-selected photoelectron velocitymap imaging spectroscopy with quantum chemical calculations. The adiabatic detachment energies and vertical detachment energies of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}$have been obtained from the measured photoelectron imaging spectra. Theoretical results indicate that the lowest-energy isomers of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ possess linear chain-shaped configurations. The binding motif in the most stable isomer of $\mathrm{Pt}_{2} \mathrm{C}_{2}^{-}$has a linear cumulenic structure with a $\mathrm{Pt}=\mathrm{C}=\mathrm{C}=\mathrm{Pt}$ configuration, and the structural characteristic persists up to all the lowest-energy isomers of the $\mathrm{Pt}_{2} \mathrm{C}_{4}{ }^{-}$and $\mathrm{Pt}_{2} \mathrm{C}_{6}{ }^{-}$anions. The chemical bonding analyses indicate that the $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ complexes have multicenter two-electron characteristics. Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0079854

INTRODUCTION

Supported noble metal catalysts are widely applied in the current industrial catalysis. Since the $\mathrm{Pt}_{1} / \mathrm{FeO}_{\mathrm{x}}$ single-atom catalysts were first reported, ${ }^{1}$ the proposed "single-atom-catalysis" has rapidly become the forefront in the field of catalytic research. ${ }^{2,3}$ Many transition-metal (i.e., Pd, Pt, and Au) nanoparticles (NPs) have been developed and used in various catalytic processes. ${ }^{4-7}$ Like a typical noble metal, Pt has many empty d orbitals, which is capable of drawing various electron-rich compounds. ${ }^{8}$ Hence, the Pt-containing compounds could serve as an ideal model when exploring the $\mathrm{C}-\mathrm{H}$ bond activation and $\mathrm{C}-\mathrm{C}$ bond formation in cross coupling reactions. ${ }^{9,10}$

During the past few decades, the noble metal carbide clusters have gained extensive interest in various kinds of experimental and theoretical studies in the gas phase. ${ }^{11-23}$ For example, PtC_{3} and
$\mathrm{PdC}_{3}{ }^{12}$ were clarified to have linear structures with the $\mathrm{C}_{\infty \mathrm{v}}$ symmetry, which were different from $\mathrm{AuC}_{3} .{ }^{13}$ Similar studies of $\mathrm{AuC}_{\mathrm{n}}{ }^{-}$ ($\mathrm{n}=2,4$, and 6) revealed that the $\mathrm{AuC}_{2}{ }^{-}$complex has a linear structure, in contrast to the bent geometries of both $\mathrm{AuC}_{4}{ }^{-}$and $\mathrm{AuC}_{6}{ }^{-14-16}$ As for neutral $\mathrm{PdC}_{\mathrm{n}}$, the linear structures are favored when $\mathrm{n}=2-9$, while the cyclical structures are preferred in $\mathrm{PdC}_{\mathrm{n}}$ ($\mathrm{n}=10-12$). ${ }^{17}$ Density functional theory (DFT) calculations predicted that the whole series of anionic and neutral $\mathrm{Pt}_{\mathrm{n}} \mathrm{C}_{2}^{-/ 0}(\mathrm{n}=1-7)$ clusters exhibit two-dimensional (2D) planar chain-shaped or ringbased structures. ${ }^{21,22} \mathrm{The}_{\mathrm{Pt}}^{2} \mathrm{C}^{-}$cluster was characterized to have a $\mathrm{C}_{2 \mathrm{~V}}$ symmetric $\mathrm{Pt}-\mathrm{C}-\mathrm{Pt}$ bent structure using photoelectron spectroscopy (PES) and DFT calculations. ${ }^{23}$ In the binuclear $\mathrm{Au}_{2} \mathrm{C}_{\mathrm{n}}{ }^{-}$ ($\mathrm{n}=2,4$, and 6) complexes, the most stable structure of $\mathrm{Au}_{2} \mathrm{C}_{2}{ }^{-}$was identified to have a linear acetylenic $\mathrm{Au}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Au}^{-}$configuration, whereas $\mathrm{Au}_{2} \mathrm{C}_{\mathrm{n}}{ }^{-}(\mathrm{n}=4$ and 6$)$ were determined to have asymmetric $\mathrm{Au}-\mathrm{Au}-(\mathrm{C} \equiv \mathrm{C})_{\mathrm{m}}{ }^{-}(\mathrm{m}=2-3)$ structures. ${ }^{18}$ However, experimental
investigations of binuclear $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}$clusters remain elusive thus far. In this work, we report a photoelectron velocity-map imaging spectroscopic study on the series of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ species. Quantum chemical calculations have been performed on these clusters to identify the structure of the low-lying isomers and to assign the observed spectral features.

METHODS

Experimental methods

This work was performed using a homemade dual-channel time-of-flight mass spectrometer, coupled with a laser vaporization supersonic cluster source and a photoelectron velocity map imaging analyzer. ${ }^{24}$ The $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ anions were produced via laser vaporization of the platinum-carbon mixture target (mole ratio, $\mathrm{M} / \mathrm{C}=1: 5$) in expansions of pure helium carrier gas. The cooled clusters of $\sim 200 \mathrm{~K}$ were then skimmed into the extraction zone of a Wiley-McLaren TOF mass spectrometer. The anions of interest were mass-selected and interacted with laser beams of both $266 \mathrm{~nm}(4.661 \mathrm{eV})$ and $355 \mathrm{~nm}(3.496 \mathrm{eV})$. The photoelectrons were mapped onto a detector consisting of a micro-channel plate and a phosphor screen and recorded by using a chargecoupled device (CCD) camera. Each raw 2D image was obtained by accumulating $10000-50000$ laser shots at a 10 Hz repetition rate before being reconstructed using the basis set expansion inverse Abel to transform method (BASEX). The photoelectron spectra were calibrated using the known spectrum of Au^{-}and have an energy resolution better than 5% (50 meV for 1 eV kinetic energy electrons).

Theoretical details

To elucidate the electronic and geometrical structures of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}$($\mathrm{n}=1-3$), theoretical calculations were made with the Gaussian 09 program. ${ }^{25}$ The structures were optimized with density functional theory (DFT) using the B3LYP functional, as this approach was widely applied in the discussion of the structure of $\mathrm{TMC}_{\mathrm{n}}{ }^{-}$clusters. ${ }^{14-23}$ The basis set of aug-cc-pVTZ was used for C and Stuttgart/Dresden (SDD) was applied to Pt (hereafter referred to as the B3LYP/aug-cc-pVTZ/SDD level of theory). ${ }^{26}$ Harmonic frequency analysis ensured that the obtained structures were real minima on the potential energy surfaces and was used in the calculation of the zero-point energy (ZPE) corrections. To obtain higher precision results, the single-point energy calculations were refined at the B3LYP level in conjunction with aug-cc-pVTZ for C and aug-cc-pVTZ-PP for the Pt atom (B3LYP/aug-cc-pVTZ/aug-cc-pVTZ-PP). ${ }^{27}$

Theoretically, the vertical detachment energy (VDE) was calculated as the energy difference between the neutral and the corresponding anionic species, both at the optimized anion's geometry, while the adiabatic detachment energy (ADE) was determined as the energy difference between the neutral and the anion, each at its optimized geometry, including ZPE corrections.

Moreover, to better understand the structures and stability of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}$clusters, the chemical bondings have been analyzed using the adaptive natural density partitioning (AdNDP) method ${ }^{28}$ at the B3LYP/aug-cc-PVTZ/aug-cc-pVTZ-PP level of theory.

RESULTS AND ANALYSIS

Photoelectron spectroscopy

The photoelectron imaging results of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ at $266 \mathrm{~nm}(4.661 \mathrm{eV})$ are shown in Fig. 1, where the reconstructed images (purple background) represent the central slice of the 3D laboratory frame photoelectron distribution from its 2 D projection. The 355 nm experimental spectra of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-2)$ are recorded in Fig. 2 for comparison. The absence of the vibrational structure prevents us from directly measuring the ground-state ADEs, which can be estimated by drawing a straight line along the rising edge of the lowest-lying band and then adding the instrumental resolution to the intersection with the binding energy axis. In this way, the ADE values of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ are evaluated to be 2.63 ± 0.10, 3.01 ± 0.08, and $3.22 \pm 0.07 \mathrm{eV}$ (Table I), respectively. The VDEs of the ground states for $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}^{-}(\mathrm{n}=1-3)$ are readily determined from the spectral peaks to be $2.84 \pm 0.09,3.09 \pm 0.08$, and

FIG. 1. Photoelectron spectra of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ recorded at $266 \mathrm{~nm}(4.661 \mathrm{eV})$. Photoelectron images after inverse Abel transformation are embedded in the photoelectron spectra.

FIG. 2. Photoelectron spectra of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-2)$ recorded at $355 \mathrm{~nm}(3.496 \mathrm{eV})$. Photoelectron images after inverse Abel transformation are embedded in the photoelectron spectra.
$3.58 \pm 0.05 \mathrm{eV}$ (Table I), respectively. Overall, the experimental VDE and ADE values increase with the growth of cluster size. β_{1} of $\mathrm{Pt}_{2} \mathrm{C}_{4}^{-}$ is 0.02 and β_{2} is -0.08 in our experiment, while for $\mathrm{Pt}_{2} \mathrm{C}_{6}{ }^{-}, \beta_{1}$ is -0.01 and β_{2} is 0.02 . The values of β_{1} and β_{2} are approximate, indicating the anisotropic nature of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$.

Comparison between experimental and theoretical results

Quantum chemical calculations have been necessarily performed to assess the geometric and electronic structures and to help support spectral assignments. Optimized structures of low-lying isomers for $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ anions and the corresponding naturals are calculated and, respectively, displayed in Figs. 3 and 4. The theoretical VDE and ADE values of the five lowest-energy isomers for $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ simultaneously computed at the B3LYP/aug-cc-pVTZ/aug-cc-pVTZ-PP level of theory are compared with the experimentally obtained data in Table I. Moreover, to further clarify the structural features, the photoelectron spectra for the theoretically calculated anionic isomers are simulated and compared with the experimental 266 nm results in Fig. 5.

$\mathrm{Pt}_{2} \mathrm{C}_{2}^{-}$

In Fig. 3, the lowest-lying isomer of $\mathrm{Pt}_{2} \mathrm{C}_{2}^{-}$(labeled 2A) is in the $\mathrm{D}_{\infty h}$ symmetry and exhibits a linear chain $\mathrm{Pt}-\mathrm{C}-\mathrm{C}-\mathrm{Pt}^{-}$structure with a ${ }^{2} \Sigma_{\mathrm{u}}{ }^{+}$electronic state. The 2B isomer has a C C_{s} symmetry with two merged triangle structures and possesses a ${ }^{2} \mathrm{~A}^{\prime}$ electronic state. The 2B isomer lies 1.00 eV higher in energy than 2 A . The 2C isomer has a $\mathrm{C}_{\infty \text { v }}$ symmetry with an electronic state of ${ }^{4} \Sigma^{+}$and lies higher in energy than 2 A by 1.58 eV . As listed in Table I, the calculated VDE and ADE values of 2 A (2.82 and 2.75 eV) are consistent with the experimental values (2.84 ± 0.09 and $2.63 \pm 0.10 \mathrm{eV}$) (Table I). By

TABLE I. Comparison of experimental VDE and ADE values to the B3LYP calculated ones of the five lowest-energy isomers for $\mathrm{Pt}_{2} \mathrm{C}_{2 n}-(\mathrm{n}=1-3)$.

Cluster	Isomer	Relative energy (eV)	VDE (eV)		ADE (eV)	
			Expt. ${ }^{\text {a }}$	Calc.	Expt. ${ }^{\text {a }}$	Calc.
$\mathrm{Pt}_{2} \mathrm{C}_{2}{ }^{-}$	2A	0.00		2.82		2.75
	2B	1.00		2.60		2.32
	2C	1.58	2.84(9)	4.50	2.63(10)	4.44
	2D	1.65		3.57		3.38
	2E	1.81		1.90		1.70
$\mathrm{Pt}_{2} \mathrm{C}_{4}{ }^{-}$	4A	0.00		3.17		3.08
	4B	1.21		3.20		2.72
	4C	1.33	3.09(8)	3.34	3.01(8)	2.89
	4D	1.47		4.24		3.79
	4 E	1.56		3.16		2.75
$\mathrm{Pt}_{2} \mathrm{C}_{6}{ }^{-}$	6A	0.00		3.44		3.33
	6B	0.65		3.61		3.56
	6C	1.05	3.58(5)	3.08	3.22(7)	2.83
	6 D	1.15		3.45		3.18
	6E	1.18		3.40		3.12

[^0]
$2 A\left(D_{\infty h},{ }^{2} \Sigma_{u}{ }^{+}\right)$ 0.00
$2 B\left(C_{s},{ }^{2} A^{\prime}\right)$
+1.00

$4 B\left(C_{2 v},{ }^{2} B_{2}\right)$
$+1.21$

$6 \mathrm{~A}\left(\mathrm{D}_{\infty \mathrm{h}},{ }^{2} \Sigma_{\mathrm{u}}{ }^{+}\right)$ 0.00

$+1.47$

$2 E\left(C_{s},{ }^{4} A^{\prime}\right)$
+1.81

$+1.56$

6E ($\left.\mathrm{C}_{\mathrm{s}},{ }^{2} \mathrm{~A}^{\prime}\right)$
+1.18

FIG. 3. Ground-state structures and selected low-lying isomers of the $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}$($\mathrm{n}=1-3$) anions. Relative energies are given in eV .
contrast, the VDEs and ADEs of 2C do not match the experimental values. Moreover, the 2B and 2C isomers lie too high in energy to be experimentally probed. The simulated spectral profiles, on the other hand, provide strong evidence that the lowest-energy structure 2A contributes to this experiment (Fig. 5).

$P t_{2} C_{4}^{-}$

For $\mathrm{Pt}_{2} \mathrm{C}_{4}{ }^{-}$, the lowest-energy 4A structure has a $\mathrm{D}_{\infty} \mathrm{h}$ symmetry with a ${ }^{2} \Sigma_{\mathrm{u}}{ }^{+}$spin state, showing a linear chainshaped $\mathrm{Pt}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{Pt}^{-}$geometry. The 4 B isomer in the $\mathrm{C}_{2 \mathrm{v}}$ symmetry contains a triangle structure with a C atom connected
to three linear chain-shaped carbon atoms. The 4 C isomer displays a six-member ring structure with a $D_{2 h}$ symmetry. The 4 B and 4 C have relative energies of 1.21 and 1.33 eV higher than 4 A isomers, respectively. The calculated VDE and ADE values of $4 \mathrm{~A}(3.17$ and 3.08 eV$)$ are consistent with the experiment values $(3.09 \pm 0.08$ and $3.01 \pm 0.08 \mathrm{eV})$ (Table I). The 4 B isomer can be excluded, considering the marked disagreement between its simulated spectrum and the experimental result. The 4 C isomer also does not exist in the present experiment, noting that its calculated VDE value $(3.34 \mathrm{eV})$ is obviously higher than the experimental result (3.09 eV).

0.00

2B' ($\mathrm{C}_{\mathrm{s}},{ }^{3} \mathrm{~A}^{\prime}$)
$+0.70$

4B' $\left(C_{2 v},{ }^{1} \mathrm{~A}_{2}\right)$
$+0.59$

6B' ($\left.D_{2 h},{ }^{1} A^{\prime \prime}\right)$
$+0.55$

$2 C^{\prime}\left(C_{1},{ }^{1} A\right)$ $+0.95$

4C' $\left.C_{s},{ }^{1} A^{\prime}\right)$ +1.16

6C' ($\left.C_{s},{ }^{1} A^{\prime}\right)$ +1.02

4D' $\left(C_{2 v},{ }^{3} \mathrm{~A}_{2}\right)$ $+1.20$

6D' $\left(\mathrm{C}_{2 \mathrm{v}},{ }^{3} \mathrm{~A}_{2}\right)$ $+1.20$

4E' $\left(C_{2 v},{ }^{1} A_{2}\right)$
$+1.38$

6E' $\left(C_{2 v},{ }^{1} A_{2}\right)$ $+1.26$

FIG. 4. Ground-state structures and selected low-lying isomers of the $\mathrm{Pt}_{2} \mathrm{C}_{2 n}(\mathrm{n}=1-3)$ neutrals. Relative energies are given in eV.

FIG. 5. Comparison of experimental 266 nm photoelectron spectra (bottom rows) of $\mathrm{Pt}_{2} \mathrm{C}_{2 n}{ }^{-}(\mathrm{n}=1-3)$ to the simulated spectra of the low-lying isomers (top rows).

$\mathrm{Pt}_{2} \mathrm{C}_{6}{ }^{-}$

Similarly, the most stable 6 A isomer of $\mathrm{Pt}_{2} \mathrm{C}_{6}{ }^{-}$displays a $\mathrm{D}_{\infty} \mathrm{h}$ symmetry with a ${ }^{2} \Sigma_{\mathrm{u}}{ }^{+}$electronic state, which has a linear chainshaped $\mathrm{Pt}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{Pt}^{-}$geometry. The 6B isomer in the ${ }^{2} \mathrm{~A}^{\prime}$ spin state has a triangle substructure in which one C atom is bonded to the linear $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{Pt}$ atom chain. The 6 C isomer is featured by an eight-member ring structure with a $D_{2 h}$ symmetry. The 6B and 6C isomers are higher in energy than 6A by 0.65 and 1.05 eV , respectively. The calculated VDE and ADE values of $6 \mathrm{~A}(3.44$ and 3.33 eV) and $6 \mathrm{~B}(3.61$ and 3.56 eV) agree well with the experiment values (3.58 ± 0.05 and $3.22 \pm 0.07 \mathrm{eV}$) (Table I). Their simulated spectra also show good agreements with the measured curve, indicating that the 6 A and 6 B isomers shall coexist in the current experimental condition. The 6C-6E isomers are all excluded due to too high energy.
$P t_{2} C_{2 n}(n=1-3)$
Figure 4 shows the five lowest-energy isomers of each neutral $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}(\mathrm{n}=1-3)$ cluster. It is worth noting that the lowest-lying isomers of neutral $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}(\mathrm{n}=1-3)$ all have linear chain-shaped
structures with Pt atoms distributing at both ends, which are consistent with the corresponding anions. For $\mathrm{Pt}_{2} \mathrm{C}_{2}$, the lowest-energy $2 \mathrm{~A}^{\prime}$ isomer possesses a $\mathrm{D}_{\infty h}$ structure with a ${ }^{3} \Sigma_{\mathrm{g}}{ }^{+}$spin state. The $\mathrm{Pt}-\mathrm{C}$ bond length of $\mathrm{Pt}_{2} \mathrm{C}_{2}$ is $1.773 \AA$, shorter than that of $\mathrm{Pt}_{2} \mathrm{C}_{2}^{-}$by $0.04 \AA$ (Fig. S1). Compared to the $\mathrm{Pt}-\mathrm{C}$ bond length (2.03 A) in polyacetylene, ${ }^{29}$ the $\mathrm{Pt}-\mathrm{C}$ bond length of $\mathrm{Pt}_{2} \mathrm{C}_{2}$ is shorter, which means that the $\mathrm{Pt}-\mathrm{C}$ bond of $\mathrm{Pt}_{2} \mathrm{C}_{2}$ could be a double bond. In addition, the $\mathrm{C}-\mathrm{C}$ bond length in $\mathrm{Pt}_{2} \mathrm{C}_{2}(1.289 \AA)$ is longer than the triple bond $\mathrm{C} \equiv \mathrm{C}(1.20 \AA)$ and shorter than single bond $\mathrm{C}-\mathrm{C}(1.38 \AA)$ in polyacetylene. ${ }^{29}$ The bonding structure of $\mathrm{Pt}_{2} \mathrm{C}_{2}$ is more probable to be a $\mathrm{Pt}=\mathrm{C}=\mathrm{C}=\mathrm{Pt}$ configuration, which is similar to neutral $\mathrm{O}_{2} \mathrm{C}_{2} \cdot{ }^{30}$ The detailed bond length values for $\mathrm{Pt}_{2} \mathrm{C}_{4}{ }^{-/ 0}$ and $\mathrm{Pt}_{2} \mathrm{C}_{6}-10$ are also summarized in Fig. S1.

DISCUSSION

Figure 5 shows that the simulated spectra of the most stable isomers of the $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ species agree the best with experimental spectral features, suggesting that the lowest-energy structures largely exist under the current experimental conditions. The agreement between the experimental and theoretical results allows

FIG. 6. The selected valence canonical molecular orbital pictures of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ ground-state anions at the B3LYP/aug-cc-PVTZ/aug-cc-pVTZ-PP level of theory.
for establishing the structural features of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$. All these anionic clusters possess similar linear chain-shaped geometric configurations, which are different from the previously observed $\mathrm{Au}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$, while only metal atom substitution occurs between these cluster series.

Figure 6 displays the selected valence canonical molecular orbital pictures of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ ground-state anions. For $\mathrm{Pt}_{2} \mathrm{C}_{2}^{-}$, the singly occupied molecular orbital (SOMO) and HOMO-1 have $\mathrm{C}-\mathrm{C} \pi$ bonding orbitals and Pt-C π^{*} anti-bonding orbitals. The detached electron should arise from HOMO-1 of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}$, leading to the ${ }^{3} \Sigma_{\mathrm{g}}{ }^{+}$ground state of neutral $\mathrm{Pt}-\mathrm{C}-\mathrm{C}-\mathrm{Pt}$. It can be seen that HOMO-4 to HOMO-7 of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}$are all primarily 5 d orbits of Pt. Moreover, HOMO-8 and HOMO-9 of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}$have $\mathrm{Pt}-\mathrm{C} \pi$ orbits and $\mathrm{C}-\mathrm{C} \pi^{*}$ anti-bonding orbitals, while HOMO-10 and HOMO-11 of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}$have $\mathrm{Pt}-\mathrm{C} \pi$ orbits and $\mathrm{C}-\mathrm{C} \pi$ orbitals. By contrast, HOMO-12 of $\mathrm{Pt}_{2} \mathrm{C}_{2 n}{ }^{-}$has distinct $\mathrm{Pt}-\mathrm{C} \sigma$ bonding orbits and HOMO-14 of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}$has a C-C σ bond. The MOs of $\mathrm{Pt}_{2} \mathrm{C}_{2}{ }^{-}$ indicate two bonding orbitals (1σ and 1π), which reveals that $\mathrm{Pt}_{2} \mathrm{C}_{2}{ }^{-}$ has a linear cumulenic structure with a $\mathrm{Pt}=\mathrm{C}=\mathrm{C}=\mathrm{Pt}$ configuration. It can also be found that the same bond rules from MOs of $\mathrm{Pt}_{2} \mathrm{C}_{4}{ }^{-}$and $\mathrm{Pt}_{2} \mathrm{C}_{6}{ }^{-}$(Fig. 6). The C-C bond lengths for $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ are in the range of 1.25-1.32 A (Fig. S1). Compared with the length of the $\mathrm{C}-\mathrm{C}$ bond in polyacetylene, ${ }^{29}$ the carbon chains display remarkable $\mathrm{C}-\mathrm{C}$ bond length alternation with the short $\mathrm{C}-\mathrm{C}$ bonds $\sim 1.25 \AA$ and
long C-C bonds about $1.32 \AA$, suggesting a conjugated double bond character.

The chemical bonding analyses of $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ using AdNDP are indicated in Fig. 7. It can be seen readily that two $\mathrm{Pt}-\mathrm{C}$ bonds and two $\mathrm{C}-\mathrm{C}$ bonds exist in the $\mathrm{Pt}_{2} \mathrm{C}_{2}^{-}$anion besides eight 5 d lone pairs of Pt atoms. For $\mathrm{Pt}_{2} \mathrm{C}_{2}{ }^{-}$, there are three two-center two-electron ($2 \mathrm{c}-2 \mathrm{e}$) σ bonds (two $2 \mathrm{c}-2 \mathrm{e} \mathrm{Pt}-\mathrm{C} \sigma$ bonds and one 2 c $2 \mathrm{e} \mathrm{C}-\mathrm{C} \sigma$ bond) and three $2 \mathrm{c}-2 \mathrm{e} \pi$ bonds (two $2 \mathrm{c}-2 \mathrm{e} \mathrm{Pt-C} \pi$ bonds and single $2 \mathrm{c}-2 \mathrm{e} \mathrm{C}-\mathrm{C} \pi$ bond). Interestingly, it has one $4 \mathrm{c}-1 \mathrm{e}$ bond, which is traced to the SOMO of $\mathrm{Pt}_{2} \mathrm{C}_{2}{ }^{-}$in Fig. 6. This also shows that $\mathrm{Pt}_{2} \mathrm{C}_{2}{ }^{-}$has a $\mathrm{Pt}=\mathrm{C}=\mathrm{C}=\mathrm{Pt}$ structure.
$\mathrm{Pt}_{2} \mathrm{C}_{4}{ }^{-}$has two $\mathrm{Pt}-\mathrm{C}$ bonds and three $\mathrm{C}-\mathrm{C}$ bonds besides eight 5d lone pairs of Pt atoms, whereas there are five two-center twoelectron (2c-2e) σ bonds, including three $\mathrm{C}-\mathrm{C} \sigma$ bonds and two $\mathrm{Pt}-\mathrm{C}$ σ bonds, and four $2 \mathrm{c}-2 \mathrm{e} \pi$ bonds, including two $2 \mathrm{c}-2 \mathrm{e} \mathrm{Pt}-\mathrm{C} \pi$ bonds and two $\mathrm{C}-\mathrm{C} \pi$ bonds. In addition, it also has one $4 \mathrm{c}-2 \mathrm{e} \mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ π bond. Moreover, it also has one 6 c -1e bond, which is traced to the SOMO of $\mathrm{Pt}_{2} \mathrm{C}_{4}^{-}$in Fig. 6. For $\mathrm{Pt}_{2} \mathrm{C}_{6}{ }^{-}$, it has two $\mathrm{Pt}-\mathrm{C}$ bonds and five $\mathrm{C}-\mathrm{C}$ bonds besides eight 5 d lone pairs of Pt atoms, whereas there are seven $2 \mathrm{c}-2 \mathrm{e} \sigma$ bonds involving five $\mathrm{C}-\mathrm{C} \sigma$ bonds and two $\mathrm{Pt}-\mathrm{C}$ σ bonds. It has two $2 \mathrm{c}-2 \mathrm{e} \mathrm{Pt}-\mathrm{C} \pi$ bonds and many characters of $2 \mathrm{c}-$ $2 \mathrm{e} \mathrm{C}-\mathrm{C} \pi$ bonds. In addition, it has two $4 \mathrm{c}-2 \mathrm{e} \mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C} \pi$ bonds. Furthermore, there is also one $8 \mathrm{c}-1 \mathrm{e}$ bond, which is also traced to the SOMO of $\mathrm{Pt}_{2} \mathrm{C}_{6}{ }^{-}$in Fig. 6. It shows that $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ have

FIG. 7. Chemical bonding analyses of $\mathrm{Pt}_{2} \mathrm{C}_{2 n}-(\mathrm{n}=1-3)$ using Adaptive Natural Density Partitioning (AdNDP) at the B3LYP/aug-cc-PVTZ/aug-cc-pVTZ-PP level of theory.
the same feature as platinum ethene $\left[\mathrm{Pt}=(\mathrm{C}=\mathrm{C})_{\mathrm{n}}=\mathrm{Pt}^{-}\right]$from Figs. 6 and 7 .

CONCLUSION

The $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ cluster anions were generated via a laser vaporization supersonic cluster source and characterized by mass-selected time-of-flight photoelectron velocity-map imaging spectroscopy. Theoretical calculations were performed to elucidate the geometric and electronic structures. The experimental and calculated results reveal that the binding motif in the most stable isomer of $\mathrm{Pt}_{2} \mathrm{C}_{2}{ }^{-}$, a linear cumulenic structure with a $\mathrm{Pt}=\mathrm{C}=\mathrm{C}=\mathrm{Pt}$ configuration, is restrained in the lowest-energy isomers for both the $\mathrm{Pt}_{2} \mathrm{C}_{4}{ }^{-}$ and $\mathrm{Pt}_{2} \mathrm{C}_{6}{ }^{-}$anions $\left[\mathrm{Pt}=(\mathrm{C}=\mathrm{C})_{\mathrm{n}}=\mathrm{Pt}^{-}\right]$. The chemical bonding analyses indicate that $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-}(\mathrm{n}=1-3)$ has multicenter two-electron features with strong electron delocalization.

SUPPLEMENTARY MATERIAL

See the supplementary material for detailed information on structures and bond lengths of the most stable isomers for $\mathrm{Pt}_{2} \mathrm{C}_{2 \mathrm{n}}{ }^{-/ 0}$ ($\mathrm{n}=1-3$).

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21973084, 21688102, and 21873097), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (CAS) (Grant No. 2020187), the Strategic Priority Research Program of CAS (Grant No. XDB17000000), the CAS (Grant No. GJJSTD20190002), the International Partnership Program of CAS (Grant No. 121421KYSB20170012), and the K. C. Wong Education Foundation (Grant No. GJTD-2018-06). The authors acknowledge the Dalian Coherent Light Source (DCLS) for support and assistance.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available within the article and its supplementary material.

REFERENCES

${ }^{1}$ B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, and T. Zhang, Nat. Chem. 3, 634 (2011).
${ }^{2}$ R. Lang, X. Du, Y. Huang, X. Jiang, Q. Zhang, Y. Guo, K. Liu, B. Qiao, A. Wang, and T. Zhang, Chem. Rev. 120, 11986 (2020).
${ }^{3}$ L. Zhang, M. Zhou, A. Wang, and T. Zhang, Chem. Rev. 120, 683 (2020).
${ }^{4}$ B. Han, Y. Guo, Y. Huang, W. Xi, J. Xu, J. Luo, H. Qi, Y. Ren, X. Liu, B. Qiao, and T. Zhang, Angew. Chem., Int. Ed. 59, 11824 (2020).
${ }^{5}$ G. Vilé, D. Albani, M. Nachtegaal, Z. Chen, D. Dontsova, M. Antonietti, N. López, and J. Pérez-Ramírez, Angew. Chem., Int. Ed. 54, 11265 (2015).
${ }^{6}$ T. Whittaker, K. B. S. Kumar, C. Peterson, M. N. Pollock, L. C. Grabow, and B. D. Chandler, J. Am. Chem. Soc. 140, 16469 (2018).
${ }^{7}$ T. He, W. Wang, F. Shi, X. Yang, X. Li, J. Wu, Y. Yin, and M. Jin, Nature 598, 76 (2021).
${ }^{8}$ S. T. Hunt, M. Milina, A. C. Alba-Rubio, C. H. Hendon, J. A. Dumesic, and Y. Roman-Leshkov, Science 352, 974 (2016).
${ }^{9}$ A. T. Bell, Science 299, 1688 (2003).
${ }^{10}$ L. Zhang, L. T. Roling, X. Wang, M. Vara, M. Chi, J. Liu, S.-I. Choi, J. Park, J. A. Herron, Z. Xie, M. Mavrikakis, and Y. Xia, Science 349, 412 (2015).
${ }^{11}$ P. Pyykkö, Angew. Chem., Int. Ed. 43, 4412 (2004).
${ }^{12}$ D. M. Bittner, D. P. Zaleski, D. P. Tew, N. R. Walker, and A. C. Legon, Angew. Chem., Int. Ed. 55, 3768 (2016).
${ }^{13}$ Q. Zhang, L.-c. Song, X. Lu, R.-b. Huang, and L.-S. Zheng, J. Mol. Struct. 967, 153 (2010).
${ }^{14}$ B. R. Visser, M. A. Addicoat, J. R. Gascooke, W. D. Lawrance, and G. F. Metha, J. Chem. Phys. 138, 174310 (2013).
${ }^{15}$ I. León, Z. Yang, and L.-S. Wang, J. Chem. Phys. 140, 084303 (2014).
${ }^{16}$ I. León, F. Ruipérez, J. M. Ugalde, and L. S. Wang, J. Chem. Phys. 145, 064304 (2016).
${ }^{17}$ P. Wang, W. Zhang, X.-L. Xu, J. Yuan, H.-G. Xu, and W. Zheng, J. Chem. Phys. 146, 194303 (2017).
${ }^{18}$ I. León, F. Ruipérez, J. M. Ugalde, and L.-S. Wang, J. Chem. Phys. 149, 144307 (2018).
${ }^{19}$ X. Sun, J. Du, and G. Jiang, Struct. Chem. 24, 1289 (2012).
${ }^{20}$ Y. Wei, J. X. Xu, X. M. Yuan, and X. H. Zheng, Adv. Mater. Res. 652-654, 815 (2013).
${ }^{21}$ S.-J. Lu, Chem. Phys. Lett. 694, 70 (2018).
${ }^{22}$ S.-J. Lu, Chem. Phys. Lett. 699, 218 (2018).
${ }^{23}$ S.-J. Lu, X.-L. Xu, H.-G. Xu, and W.-J. Zheng, J. Chem. Phys. 151, 224303 (2019).
${ }^{24}$ Z. Qin, X. Wu, and Z. Tang, Rev. Sci. Instrum. 84, 066108 (2013).
${ }^{25}$ M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian 09, Gaussian, Inc., Wallingford, CT, 2009.
${ }^{26}$ M. Dolg, H. Stoll, and H. Preuss, "Energy adjusted ab initio pseudopotentials for the rare earth elements," J. Chem. Phys. 90, 1730 (1989).
${ }^{27}$ T. H. Dunning, J. Chem. Phys. 90, 1007 (1989).
${ }^{28}$ D. Y. Zubarev and A. I. Boldyrev, Phys. Chem. Chem. Phys. 10, 5207 (2008).
${ }^{29}$ Q. Zheng, J. C. Bohling, T. B. Peters, A. C. Frisch, F. Hampel, and J. A. Gladysz, Chem. - Eur. J. 12, 6486 (2006).
${ }^{30}$ A. R. Dixon, T. Xue, and A. Sanov, Angew. Chem., Int. Ed. 54, 8764 (2015).

[^0]: ${ }^{a}$ Numbers in parentheses represent the uncertainty in the last digit.

